کاهش باند وسیع سطح مقطع راداری در آرایه آنتنی تزویج شده فشرده به‌وسیله بارگذاری آرایه‌ای از شکاف‌های متوالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه شهید مدنی آذربایجان ، تبریز ، ایران

2 کارشناسی ارشد، دانشگاه شهید مدنی آذربایجان ، تبریز ، ایران

چکیده

در این مقاله، یک روش مؤثر برای کاهش سطح مقطع راداری با پوشش باند وسیع فرکانسی در دو ناحیه داخل و خارج باند برای یک آرایه آنتنی خطی صفحه E میکرواستریپی ارائه می­گردد. در این مطالعه، پچ­های تشعشعی نزدیک به هم تعریف شده که علاوه بر فشرده­سازی آرایه و کنترل تطبیق امپدانسی، تزویج متقابل نیز در کاهش سطح مقطع راداری لحاظ شود. در روش ارائه شده، برخلاف اکثریت روش­های فضاگیر و چندلایه با ضخامت و پیچیدگی بالا در ساخت و طراحی، اعم از انواع فرا صفحه‌ها و ساختارهای فرکانس گزین پارازیتی، از آرایه­ای از شکاف­های متوالی در بدنه پچ­ها استفاده می­شود تا مجموعه­ای از امواج بازتابی با دامنه و فاز متغیر و قابل‌کنترل را به سمت گیرنده رادار حاصل کنیم. مطالعات روی پارامترهای کلیدی، اعم از تعداد، طول و فواصل بین شکاف­ها نشان می­دهد که برآیند امواج بازگشتی به سمت رادار می­تواند در یک باند فرکانسی وسیعی در اطراف فرکانس تشدید آنتن کمینه شود. همچنین برای حفظ مشخصات امپدانسی و تشعشعی، موقعیت­یابی جدیدی برای کابل تغذیه انجام می­شود. برای اعتبار­سنجی این روش، دو آرایه­ با و بدون شکاف، ساخته و اندازه­گیری می­شود. اندازه­گیری سطح مقطع راداری در حالت مونو استاتیک، کاهش حداقل 10 ‌دسی‌بل در بازه 9/1 تا 2/11 گیگاهرتز، تطبیق بالای 25 ‌دسی‌بل و راندمان و بهره­ای بالاتر از 75% و 5/4 دسی‌بل را نشان می­دهد. کاهش سطح مقطع راداری برای زاویه تابشی تا حد 30 درجه و در حالت بای­استاتیک در کل باند قابل رویت است.

کلیدواژه‌ها


عنوان مقاله [English]

Wideband Reduction of Radar Cross Section in Compact Coupled Antenna Array by Loading an Array of Sequential Slots

نویسندگان [English]

  • Reza Zaker 1
  • Touraj Paifeshordeh 2
1 Associate Professor, Shahid Madani University of Azerbaijan, Tabriz, Iran
2 Master's degree, Shahid Madani University of Azerbaijan, Tabriz, Iran
چکیده [English]

In this article, an effective method to reduce the radar cross section with wide frequency band coverage in both in-band and out-band for a microstrip E-plane linear antenna array is presented. In this study, radiation patches are defined close to each other so that in addition to array compression and impedance matching control, mutual-coupling should also be considered in reducing the radar cross section. In the presented method, unlike most space-consuming and multi-layered methods with high thickness and complexity in construction and design, including all types of metasurfaces and parasitic frequency selective structures, an array of consecutive slots is used in the body of the patches, so that a set of reflected waves with variable and controllable amplitude and phase towards the receiving radar can be obtained. Studies on the key parameters, such as the number, length, and distances between the slots, show that the result of reflected waves to the radar can be minimized in a wide frequency band around the resonance frequency of the antenna. Also, to maintain the impedance and radiation characteristics, a new positioning is done for the feeding coaxial cable. To validate this method, two arrays with and without slots are fabricated and measured. The measurement of the radar cross-section in monostatic mode shows a reduction of at least 10dB in the frequency range of 1.9 to 11.2GHz, impedance matching over 25dB and efficiency and gain more than 75% and 4.5dB, respectively. The reduction of the radar cross section for the incident angle up to 30degrees and in bi-static mode can be seen in the entire band.

کلیدواژه‌ها [English]

  • Array Antenna
  • Radar Cross Section (RCS)
  • Monostatic
  • Mutual Coupling

Smiley face

[1]     X. Ding, Y. –F. Cheng, W. Shao, and B. Z. Wang, "Broadband low-RCS phased array with wide-angle scanning performance based on the switchable stacked artificial structure," IEEE Trans. on Antennas and Propag., vol. 67, no. 10, pp. 6452-6460, 2019. DOI: 10.1109/TAP.2019.2925202
[2]     R. Zaker and A. Sadeghzadeh, "Passive techniques for target radar cross section reduction: A comprehensive review ", Inter. J. RF and Microwave Computer-Aided Eng., vol. 30, no. 11, pp. e22411, 11 2020. DOI: 10.1002/mmce.22411
[3]     L. Zhou, F. Yang, "Radar cross section reduction for microstrip antenna using shaping technique," IEEE Inter. Conference on Microwave and Millimeter Wave Tech. (ICMMT), Beijing, China, 2016, pp. 871-873. DOI: 10.1109/ICMMT.2016.7762470
[4]     J. Yu, W. Jiang, and S. Gong, "Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction, " IEEE Antennas and Wire. Propag. Letters, vol. 19, no. 7, pp. 1058-1062, 2020. DOI: 10.1109/LAWP.2020.2988089
[5]     J. Ren, S. Gong, and W. Jiang, "Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber," IEEE Antennas and Wire. Propag. Letters, vol. 17, no. 1, pp. 102-105, 2018. DOI: 10.1109/LAWP.2017.2776978
[8]     Y. Liu, Y. Jia, W. Zhang, Y. Wang, S. Gong, and G. Liao, "An integrated radiation and scattering performance design method of low- RCS patch antenna array with different antenna elements," IEEE Trans. on Antennas and Propag., vol. 67, no. 9, pp. 6199-6204, 2019. DOI: 10.1109/TAP.2019.2925194
[9]     N. Nakamoto, T. Takahashi, T. Fukasawa, N. Yoneda and H. Miyashita, "RCS synthesis of array antenna with circulators and phase shifters and measurement method for deterministic RCS reduction," IEEE Trans. on Antennas and Propag., vol. 69, no. 1, pp. 135-145, 2021. DOI: 10.1109/TAP.2020.3008627
[10]    M. Pazokian, N. Komjani and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wire. Propag. Letters, vol. 17, no. 8, pp. 1382-1385, 2018. DOI: 10.1109/LAWP.2018.2846613
[11]    R. Zaker and A. Sadeghzadeh, "Wideband radar cross section reduction using a novel design of artificial magnetic conductor structure with a triple-layer chessboard configuration", Int. J. RF Microwave Computer-Aided Eng., vol. 29, no. 2, Feb. 2019. DOI: 10.1002/mmce.21545
[12]    R. Zaker and A. Sadeghzadeh, "Double-layer ultra-thin artificial magnetic conductor structure for wideband radar cross-section reduction", IET Microwave. Antennas Propag., vol. 12, no. 9, pp. 1601-1607, Jul. 2018. DOI:10.1049/iet-map.2017.1019
[13]    J. Yu, W. Jiang, and S. Gong, "Low-RCS beam-steering antenna based on reconfigurable phase gradient metasurface," IEEE Antennas and Wire. Propag. Letters, vol. 18, no. 10, pp. 2016-2020, 2019. DOI: 1109/LAWP.2019.2936300
[14]    Y. Fan, J. F. Wang, Y. F. Li, J. Q. Zhang, Y. Q. Pang, Y. J. Han, S. B. Qu, "Low-RCS multi-beam metasurface-inspired antenna based on Pancharatnam–Berry phase," IEEE Trans. on Antennas and Propag., vol. 68, no. 3, pp. 1899-1906, 2020. DOI: 10.1109/TAP.2019.2929573
[15]    R. Zaker and A. Sadeghzadeh, "A Low-Profile Design of Polarization Rotation Reflective Surface for Wideband RCS Reduction," IEEE Antennas and Wire. Propag. Letters, vol. 18, no. 9, pp. 1794-1798, Sept. 2019. DOI: 10.1109/LAWP.2019.2930130
[16]    Y. Liu, W. Zhang, Y. Jia, and A. Wu, "Low RCS antenna array with reconfigurable scattering patterns based on digital antenna units," IEEE Trans. on Antennas and Propag., vol. 69, no. 1, pp. 572-577, 2021. DOI: 10.1109/TAP.2020.3004993
[17]    W. He, X. L. Weng, W. Luo, H. Y. Chen, X. Y. Wu, K. Li, Y. Huang, B.P. Liu, and L. Li, "Investigation of radar cross section reduction for dihedral corner reflectors based on camouflage grass," IEEE Antennas and Wire. Propag. Letters, vol.20, no.12, pp. 2447-2451, 2021. DOI: 10.1109/LAWP.2021.3114302
[18]    Q. Wang, X. Tang, D. Zhou, Z. Du, and X. Huang, "A dual-layer radar absorbing material with fully embedded square-holes frequency selective surface," IEEE Antennas and Wire. Propag. Letters, vol. 16, pp. 3200-3203, 2017. DOI: 10.1109/LAWP.2017.2768441
[19]    Y. Wang, K. Chen, Y. Li, and Q. Cao, "Design of nonresonant metasurfaces for broadband RCS reduction," IEEE Antennas and Wire. Propag. Letters, vol. 20, no. 3, pp. 346-350, 2021. DOI: 10.1109/LAWP.2021.3049882
[20]    D. Sang, Q. Chen, L. Ding, M. Guo, and Y. Fu, "Design of checkerboard AMC structure for wideband RCS reduction," IEEE Trans. on Antennas and Propag., vol. 67, no. 4, pp. 2604-2612, 2019. DOI: 10.1109/TAP.2019.2891657
[21]    Q. Zheng, C. Guo, G. A. E. Vandenbosch and J. Ding, "Low-profile circularly polarized array with gain enhancement and RCS reduction using polarization conversion EBG structures," IEEE Trans. on Antennas and Propag., vol. 68, no. 3, pp. 2440-2445, 2020. DOI: 10.1109/TAP.2019.2943693
[22]    Y. -H. Cho and I. -S. Choi, "General mode-matching analysis of a 2-D truncated PEC wedge covered with a magnetodielectric semicircular boss," IEEE Trans. on Antennas and Propag., vol. 68, no. 12, pp. 8033-8043, 2020. DOI: 10.1109/TAP.2020.2998921
[23]    T. J. Cui, M. Q. Qi, X. Wan, J. Zhao and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Scientific Application, vol. 3, pp. 1–9, 2014. DOI: 10.1038/lsa.2014.99
[24]    L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, and S. Liu, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Scientific Application, 
vol. 4, no. 9, pp. e324, 2015.  DOI: 10.1038/lsa.2015.97
[25]    Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna," IEEE Trans. on Antennas and Propag., vol. 64, no. 7, pp. 2954- 2962, 2016. DOI: 10.1109/TAP.2016.2562665
[26]    Y. Zhao, X. Cao, J. Gao, X. Yao, and X. Liu, "A low-RCS and high-gain slot antenna using broadband metasurface," IEEE Antennas and Wire. Propag. Letters, vol. 15, pp. 290-293, 2016. DOI: 10.1109/LAWP.2015.2442257
[27]     F. Samadi and A. Sebak, "Wideband, very low RCS engineered surface with a wide incident angle stability," IEEE Trans. on Antennas and Propag., vol. 69, no. 3, pp. 1809-1814, 2021. DOI: 10.1109/TAP.2020.3015040 
[28]     C. A. Balanis, Antenna theory: analysis and design, third ed. John wiley & sons, 2005.